EGARCH models with fat tails, skewness and leverage
نویسندگان
چکیده
منابع مشابه
EGARCH models with fat tails, skewness and leverage
An EGARCH model in which the conditional distribution is heavytailed and skewed is proposed. The properties of the model, including unconditional moments, autocorrelations and the asymptotic distribution of the maximum likelihood estimator, are obtained. Evidence for skewness in conditional t-distribution is found for a range of returns series and the model is shown to give a better fit than th...
متن کاملModeling Dynamic Volatilities and Correlations under Skewness and Fat Tails∗
We propose a new model for dynamic volatilities and correlations of skewed and heavytailed data. Our model endows the Generalized Hyperbolic distribution with time-varying parameters driven by the score of the observation density function. The key novelty in our approach is the fact that the skewed and fat-tailed shape of the distribution directly affects the dynamic behavior of the time-varyin...
متن کاملLeverage, heavy-tails and correlated jumps in stochastic volatility models
This paper proposes the efficient and fast Markov chain Monte Carlo estimation methods for the stochastic volatility model with leverage effects, heavy-tailed errors and jump components, and for the stochastic volatility model with correlated jumps. We illustrate our method using simulated data and analyze daily stock returns data on S&P500 index and TOPIX. Model comparisons are conducted based...
متن کاملVolatility Forecasting With Range-Based EGARCH Models
We provide a simple, yet highly effective framework for forecasting return volatility by combining exponential generalized autoregressive conditional heteroscedasticity models with data on the range. Using Standard and Poor’s 500 index data for 1983–2004, we demonstrate the importance of a long-memory specification, based on either a two-factor structure or fractional integration, that allows f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2014
ISSN: 0167-9473
DOI: 10.1016/j.csda.2013.09.022